THE CONSTRUCTION OF QUASI-INVARIANT MEASURES

BY

YITZHAK KATZNELSON AND BENJAMIN WEISS

ABSTRACT

If a homeomorphism possesses a non-atomic ergodic measure it has recurrent points. If it has recurrent points then there are uncountably many inequivalent ergodic quasi-invariant measures.

There has recently been some interest expressed in the construction of many inequivalent quasi-invariant ergodic measures for uniquely ergodic systems. M. Keane, in [1], has given an explicit construction of uncountably many inequivalent such measures for the irrational rotations of the circle while W. Krieger, [2], has applied category methods to obtain such collections for any uniquely ergodic homeomorphism. We propose to describe a simple construction of such families of measures under quite general conditions, that are in fact necessary. For completeness sake we review the definitions. We will be dealing with a fixed compact metric space X and a homeomorphism ϕ of X onto itself. All measures will be finite measures defined on the Borel field \mathscr{B} of X. A measure μ is said to be *ergodic* if

(1)
$$E \in \mathscr{B}, \ \phi E = E \text{ imply } \mu(E) \mu(X \setminus E) = 0.$$

It is said to be a quasi-invariant measure (q.i.) if

(2)
$$\mu(E) = 0 \text{ iff } \mu(\phi E) = 0.$$

Since any atomic measure whose support is the orbit of a single point is an ergodic q.i. we promptly lose interest in such measures, and concentrate on finding *non-atomic* ergodic q.i.'s. The following is a necessary condition for the existence of non-atomic ergodic measures.

Received February 10, 1972

LEMMA 1. If μ is a non-atomic ergodic measure then μ – a.e. point of X is recurrent (i.e. $\phi^n x$ returns infinitely often to any deleted neighborhood of x).

PROOF. Let $A_{\varepsilon} = \{x: \inf_{n \neq 0} d(\phi^n x, x) \ge \varepsilon\}$, where *d* is a metric on *X*. Since μ - a.e. point is non periodic (ergodicity), it suffices to show that $\mu(A_{\varepsilon}) = 0$. Suppose that $\mu(A_{\varepsilon}) > 0$, then there is an $A \subset A_{\varepsilon}$ with diam $(A) \le \varepsilon/3$ and $\mu(A) > 0$. Observe that, for $n \neq 0$, $\phi^n A \cap A = \emptyset$. Since μ is non-atomic there is a $B \subset A$ with $\mu(B) \ \mu(A \setminus B) > 0$. But then $\bigcup_n \phi^n B = E$ is invariant and disjoint from $A \setminus B$, thus $\mu(E) \ \mu(X \setminus E) > 0$ contradicting the ergodicity. \Box

The existence of some recurrent point is all that we shall need for our construction of *uncountably many* inequivalent ergodic q.i.'s. The next simple observation means that we can forget about the quasi-invariant part.

Given a measure μ define $\phi^n \mu$ by $\phi^n \mu(E) = \mu(\phi^n E)$. Let $c_n > 0$, with $\sum_{-\infty}^{\infty} c_n = 1$, then

(3)
$$\tilde{\mu} = \sum_{-\infty}^{\infty} c_n \phi^n \mu$$

is a q.i. and indeed the "minimal" q.i. with respect to which μ is absolutely continuous.

For later reference note that if μ is ergodic so is $\tilde{\mu}$.

LEMMA 2. Let $\{\mu_{\alpha}\}$ be an uncountable collection of mutually singular nonatomic measures. Then $\{\tilde{\mu}_{\alpha}\}$ contains an uncountable family of mutually singular measures.

PROOF. The lemma clearly follows if we show that for $\mu \in {\{\mu_{\alpha}\}}$ there are at most countably many $v \in {\{\mu_{\alpha}\}}$ such that \tilde{v} , $\tilde{\mu}$ are not mutually singular. This in turn follows if we show that for each integer *n*, there are at most countably many v's which are not singular with respect to $\phi^n \mu$. If *v* is not singular with respect to $\phi^n \mu$ write $v = v_c + v_s$ where $v_c \neq 0$ is the absolutely continuous $(\phi^n \mu)$, i.e., $v_c \in L^1(\phi^n \mu)$. Since the *v*'s are mutually singular so are the v_c 's which means that they have disjoint supports (which are sets of positive $\phi^n \mu$ measure) and their number is therefore finite or countable. \Box

One final preliminary lemma is well known, a proof is included for the reader's convenience.

LEMMA 3. Suppose that for arbitrarily large N there are disjoint sets $A_1^{(N)}, A_2^{(N)}, \dots, A_N^{(N)}$ such that $\mu(X \setminus \bigcup A_i^{(N)}) = 0$ and for any i, j there is an n = n(i,j) and c = c(i,j) > 0 such that $\phi^n A_i^{(N)} = A_j^{(N)}$ and for $E \subset A_i^{(N)}, \mu(E)$

 $= c \cdot \mu(\phi^n E)$. If in addition the collections $\{A_i^{(N)}\}_{i \leq N}$ generates \mathscr{B} , then μ is an ergodic measure for ϕ .

PROOF. Since $\{A_i^{(N)}\}_{i \leq N}$ generates \mathscr{B} , if $\phi E = E$ and $\mu(E) \ \mu(X \setminus E) > 0$, for any $\varepsilon > 0$ there is an $A_i^{(N)}$ with $\mu(E \cap A_i^{(N)}) \geq (1 - \varepsilon) \ \mu(A_i^{(N)})$. Since $\phi^n E = E$ it follows that $\mu(E \cap A_j^{(N)}) \geq (1 - \varepsilon) \ \mu(A_j^{(N)})$ for all j, i.e. $\mu(E) \geq (1 - \varepsilon) \ \mu(X)$ contradicting $(X \setminus E) > 0$. \Box

THEOREM. A necessary and sufficient condition for a homeomorphism ϕ of a compact metric space X, to have uncountably many inequivalent non-atomic ergodic q.i.'s is that ϕ have a recurrent point.

PROOF. The necessity is contained in Lemma 1. Suppose then that x_0 is a recurrent point. Since $\phi x_0 \neq x_0$ there is a compact neighborhood C(0) of x_0 such that $\phi C(0) \cap C(0) = \emptyset$, set $\phi C(0) = C(1)$. By shrinking C(0) if necessary ensure that max (diameter C(0), diameter $C(1) \leq 1$.

By the recurrence of x_0 there is an *n* with $x_0 \neq \phi^n x_0 \in \text{Int } C(0)$. Let C(00) be a compact neighborhood of x_0 such that

$$C(01) = \phi^n C(00) \subset \operatorname{Int} (C(0))$$

and

$$C(01) \cap C(00) = \emptyset.$$

Define $C(1i) = \phi C(0i) \quad (i = 0, 1)$

and by shrinking C(00) if necessary ensure that

 $\max_{\substack{0 \leq i, j \leq 1}} \operatorname{diam}(C(ij)) \leq \frac{1}{2}$

By continuing in this fashion we construct sets $C(\varepsilon_1 \varepsilon_2 \cdots \varepsilon_k) \varepsilon_i = 0, 1$ that are mutually homeomorphic, for fixed k, under powers of ϕ , and such that the intersection

$$\bigcap_{k} C(\varepsilon_{1}\varepsilon_{2}\cdots\varepsilon_{k}) = \pi(\varepsilon_{1},\varepsilon_{2},\cdots\varepsilon_{n},\cdots)$$

consists of a single point for each sequence of zeros and ones. Indeed π establishes a homeomorphism between $Y = \prod_{1}^{\infty} \{0, 1\}$ with the product topology and

$$C = \bigcap_{k} \bigcup_{\varepsilon_{l}=0,1} C(\varepsilon_{1}\varepsilon_{2}\cdots\varepsilon_{k})$$

To define a measure on X that is concentrated on C it suffices to define a measure on Y and use π to map it onto $C \subset X$. Let μ_p be the product measure on Y determined by $\mu_p(0) = p$, $\mu_p(1) = 1 - p$. For distinct $p \in (0, 1)$ these measures

are mutually singular—since, as is well known, they are *invariant* ergodic measures for the unilateral shift. The μ_p are non-atomic and thus Lemma 2 completes the proof. \Box

We've written the construction for the group of integers acting on a compact space. Any countable group would have served as well. Needless to say, uniquely ergodic homeomorphisms with a non-atomic invariant measure satisfy the hypotheses of Lemma 2 and thus we recover the Keane-Krieger result.

REFERENCES

1. M. Keane, Sur les measures quasi-ergodiques des translations irrationelles, C. R. Acad. Sci. Paris 272 (1971), 54-55.

2. W. Krieger, On Quasi-invariant measures in uniquely ergodic systems, Invent. Math. 14 (1971), 184–196.

Hebrew University of Jerusalem and Weizmann Institute of Science, Rehovot